A new Bayesian method to identify the environmental factors that influence recent migration.

نویسندگان

  • Pierre Faubet
  • Oscar E Gaggiotti
چکیده

We present a new multilocus genotype method that makes inferences about recent immigration rates and identifies the environmental factors that are more likely to explain observed gene flow patterns. It also estimates population-specific inbreeding coefficients, allele frequencies, and local population F(ST)'s and performs individual assignments. We generate synthetic data sets to determine the region of the parameter space where our method is and is not able to provide accurate estimates. Our simulation study indicates that reliable results can be obtained when the global level of genetic differentiation (F(ST)) is >1%, the number of loci is only 10, and sample sizes are of the order of 50 individuals per population. We illustrate our method by applying it to Pakistani human data, considering altitude and geographic distance as explanatory factors. Our results suggest that altitude explains better the genetic data than geographic distance. Additionally, they show that southern low-altitude populations have higher migration rates than northern high-altitude ones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting waste generation using Bayesian model averaging

A prognosis model has been developed for solid waste generation from households in Hoi An City, a famous tourist city in Viet Nam. Waste sampling, followed by a questionnaire survey, was carried out to gather data. The Bayesian model average method was used to identify factors significantly associated with waste generation. Multivariate linear regression analysis was then applied to evaluate th...

متن کامل

Modeling Factors Affecting Tax Evasion in Iran's Economy Based on the Bayesian averaging approach

This study seeks to model tax evasion and identify how effective factors affect tax evasion in the Iranian economy. Recent models show the failure of traditional models; Models do not have enough ability to model hidden variables such as tax evasion. The present study considers this failure in identifying explanatory variables and experimental model design. To achieve this, the Bayesian averagi...

متن کامل

Presentation of new ensemble method of Bayesian and logistic regression models in landslide susceptibility assessment in the Khalkhal Township

The aim of current research is to assess of landslide susceptibility in the Khalkhal Township, southern Ardabil using an ensemble and new method namely Bayesian and logistic regression (BT-LR) models. At first, landslide inventory map was prepared and then effective factors on landslide occurrence were identified. These factors are slope degree, plan curvature, slope aspect, elevation, landuse,...

متن کامل

Author gender identification from text using Bayesian Random Forest

Nowadays high usage of users from virtual environments and their connection via social networks like Facebook, Instagram, and Twitter shows the necessity of finding out shared subjects in this environment more than before. There are several applications that benefit from reliable methods for inferring age and gender of users in social media. Such applications exist across a wide area of fields,...

متن کامل

Bayesian Econometrics Approach in Determining of Effecting Factors on Pollution in Developing Countries (based on Environmental Performance Index)

Emphasis on sustainable development and the need to protect the environment as well as the adverse effects of environmental pollution on the quality of life have made environmental protection one of the main concerns of economic policymakers. For this purpose, approaches to improve the quality of the environment and the factors affecting it have triggered extensive theoretical and empirical stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 178 3  شماره 

صفحات  -

تاریخ انتشار 2008